Masahiko Furutani

Professor of Cell Biology

Minjiang Scholar

Masahiko Furutani

Contact Information

College of Life Sciences & Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou, Fujian, China

Email: ma-furut@fafu.edu.cn

Education

2002-2005, Ph.D., NAIST, Japan

2000-2002, M.S., NAIST, Japan

1996-2000, B.S., University of Tokyo, Japan

Professional Experience

2017-Present, Professor, Fujian Agriculture and Forestry University, China

2016-2017, Assistant Professo, Nagoya University, Japan

2016-2016, Postdoc Fellow, Nagoya University, Japan

2014-2016, Associate Professor, Nara Institute of Science and Technology (NAIST), Japan

2006-2014, Assistant Professor, NAIST, Japan

2005-2006, Postdoc Fellow, NAIST, Japan

Research Interests

Plant root enables anchorage of plant body to the substrate and the uptake of nutrient and water, which plays a fundamental role in plant survival. After the seed germinates, the growth of primary root is linked to gravity so that the root penetrates the soil. The maintenance of vertical root growth is known as gravitropism. At the same time, the root growth direction is affected by environmental cues, such as water, nutrients, and physical condition of soil. Due to these root behaviors, plants show a wide variety of root distribution adaptable to a varied environment in nature. My research group studies root growth in Arabidopsis gravitropism and in response to high salinity.  We are investigating the molecular mechanisms of gravitropism and salt avoidance response (halotropism) focusing on polar auxin transport that plays important roles in root growth.  Using our basic knowledge, we aim to manipulate root growth direction for crop improvement.

  1. Investigation of the molecular function of key factors in gravitropism, halotropism, and polar auxin transpor
  2. Artificial manipulation of root growth direction by chemical modification of the activity of key regulator of polar auxin transport

 
 

 

 

Publications*corresponding author, #contributed equally

Furutani M. and Morita M.T. (2021). Gravity-signaling pathways in root gravitropic set-point angle control. Plant Physiol. Accepted

Furutani M.#, Hirano Y.#, Nishimura T.#, Nakamura M., Taniguchi M., Suzuki K., Oshida R., Kondo C., Sun S., Kato K., Fukao Y., Hakoshima T., and Morita M.T. (2020). Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nat. Commun. 11:76.

Ohbayashi I., Huang S., Fukaki H., Song X., Sun S., Morita M.T., Tasaka M., Millar A.H., and Furutani M.* (2019). Mitochondrial pyruvate dehydrogenase contributes to auxin-regulated organ development. Plant Physiol. 180, 896-909.

Taniguchi M.#, Furutani M.#, Nishimura M.#, Nakamura M., Fushita T., Iijima K., Baba K., Tanaka H., Toyota M., Tasaka., and Morita M.T. (2017). The Arabidopsis LZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots.  Plant Cell 29, 1984-1999.

Ito J., Fukaki H., Onoda M., Li L., Li C., Tasaka M., and Furutani M.* (2016). Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proc. Natl. Acad. Sci. U. S. A. 113, 6562-6567.

Hayashi K., Nakamura S., Fukunaga S., Nishimura T., Jenness M.K., Murphy A.S., Motose H., Nozaki H., Furutani M., and Aoyama T. (2014). Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc. Natl. Acad. Sci. U. S. A. 111, 11557-11562.

Kamiuchi Y., Yamamoto K., Furutani M., Tasaka M., and Aida M. (2014). The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development. Front Plant Sci. 165, doi: 10.3389/fpls.2014.00165.

Furutani M.*, Nakano Y., and Tasaka M.* (2014). MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation. Proc. Natl. Acad. Sci. U. S. A. 111, 1198-1203.

Imura Y., Kobayashi Y., Yamamoto S., Furutani M., Tasaka M., Abe M. and Araki T. (2012). CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target system in Arabidopsis. Plant & Cell Physiol. 53, 287-303.

Furutani M.#, Sakamoto N.#, Yoshida S., Kajiwara T., Robert H.S., Friml J. and Tasaka M. (2011). Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers. Development 138, 2069-2078

Ito J., Sono T., Tasaka M. and Furutani M.* (2011). MACCHI-BOU 2 is required for early embryo patterning and cotyledon organogenesis in Arabidopsis. Plant & Cell Physiol. 52, 539-552

Tsuda E., Yang H., Nishimura T., Uehara Y., Sakai T., Furutani M., Koshiba T., Hirose M., Nozaki H., Murphy A.S., and Hayashi K. (2011). Alkoxy-auxins are selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1 transporters. J. Biol. Chem. 286, 2354-2364.

Ander S., Nielsen M., Keicher J., Stierhof Y.D., Furutani M., Tasaka M., Skriver K. and Jürgens G. (2008). Membrane association of the Arabidopsis ARF exchange factor GNOM involves interaction of conserved domains. Plant Cell 20, 142-151.

Furutani M.#, Kajiwara T.#, Kato T., Treml B.S., Stockum C., Torres-Ruiz R.A. and Tasaka M. (2007). The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level. Development 134, 3849-3859.

Koyama T., Furutani M., Tasaka M. and Ohme-Takagi M. (2007).  TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19, 473-484

Hibara K., Karim M.R., Takada S., Taoka K., Furutani M., Aida M. and Tasaka M. (2006). The CUP-SHAPED COTYLEDON3 Gene Regulates Postembryonic Shoot Meristem and Organ Boundary Formation in Arabidopsis. Plant Cell 18, 2946-2957.

Iwamoto A., Satoh D., Furutani M., Maruyama S., Ohba H. and Sugiyama M. (2006). Insight into the basis of root growth in Arabidopsis thaliana provided by a simple mathematical model. J Plant Res. 119, 85-93

Furutani M., Vernoux T., Traas J., Kato T., Tasaka M. and Aida M. (2004). PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131, 5021-5030.

Kajiwara T., Furutani M., Hibara K. and Tasaka M. (2004). The GURKE gene encoding an acetyl-CoA carboxylase is required for partitioning the embryo apex into three subregions in Arabidopsis. Plant & Cell Physiol. 45, 1122-1128. 

Furutani M., Aida M. and Tasaka M. (2003). Pattern Formation during Dicotyledonous Plant Embryogenesis. In Morphogenesis and Pattern Formation in Biological Systems (ed. T. Sekimura, S. Noji and P. K. Maini), pp. 139-152. Tokyo; Springer-Verlag. 

Aida M., Vernoux T., Furutani M., Traas J. and Tasaka M. (2012). Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 126, 3965-3974.